
Scaling bio-analyses
from computational clusters to grids

Heorhiy Byelas, Martijn Dijkstra, Pieter Neerincx, Freerk van Dijk,
Alexandros Kanterakis, Patrick Deelen, Morris Swertz

Genomics Coordination Center, Department of Genetics
University Medical Center Groningen

University of Groningen, The Netherlands
Email: h.v.byelas@med.umcg.nl, m.a.swertz@rug.nl

Abstract—Life sciences have moved rapidly into big data
thanks to new parallel methods for gene expression, genome-
wide association, proteomics and whole genome DNA sequencing.
The scale of these methods is growing faster than predicted
by Moores law. This has introduced new challenges and needs
for methods for specifying computation protocols for e.g. Next-
Generation Sequencing (NGS) and genome-wide association study
(GWAS) imputation analyses and running these on a large scale
is a complicated task, due to the many steps involved, long
runtimes, heterogeneous computational resources and large files.
The process becomes error-prone when dealing with hundreds of
samples, such as in genomic analysis facilities, if it is performed
without an integrated workflow framework and data management
system. From recent projects we learnt that bioinformaticians
do not want to invest much time in learning advanced grid
or cluster scheduling tools, preferring to concentrate on their
analyses, be closer to old-fashion shell scripts that they can fully
control and have some automatic mechanisms taking care of
all submission and monitoring details. We present a lightweight
workflow declaration and execution system to address these
needs, built on top of the MOLGENIS framework for data
tracking. We describe lessons learnt when scaling running NGS
and imputation analyses from computational clusters to grids and
show application of our solution, in particular, in the nation-wide
”Genome of the Netherlands” project (GoNL, 700TB of data and
about 200.000 computing hours)

I. INTRODUCTION

High-throughput analysis methods have created exciting
new possibilities for unraveling genotype-to-phenotype rela-
tionships. However, these experiments are heavily dependent
on large computational analysis for their success. For instance,
next generation sequencing analyses typically involve about
30 computational steps such as alignment, duplicate marking,
single-nucleotide polymorphism (SNP) calling, annotation and
many re-indexing and quality control steps [1]. Similarly,
GWAS data typically requires batching for imputation. Ge-
nomic analysis facilities typically face running many different
versions of such computational pipelines on hundreds or
thousands of samples. This quickly becomes a nightmare of
data file logistics (raw, intermediate, result, quality controls
and log data) and a computational scheduling nightmare (large,
small, short, long jobs that may have error states and different
computational back-ends). Furthermore, different cluster and
grid middleware do not provide all necessary operations to
execute bio-workflows. To address these challenges we present
a practical software system that combines computational and

data management for routine running of large bioinformatics
analyses.

In this work, our goal is to run different workflows in a
unified way and make workflow adaptation to different back-
ends, such as clusters and grids environments more standard
and easier. Hence, users can choose a computational back-end
with less load to run analyses, run workflows in different back-
end environments and achieve identical analysis results and, if
it is needed, combine results together. We do not want to add
another middleware layer above the back-end services, such
as job schedulers, but prefer to minimize an overhead to run
shell scripts in different environments.

In this paper, we consider the principles of the MOL-
GENIS software suite [2], [3] in a new perspective, where
it can be used as a separated module to generate all the
necessary instruments for tracing data and computations and
collecting logging information from different computational
environments. We allow the users to decide how they want to
orchestrate these instruments in different middleware systems,
although we supply a default management solution, which
includes database and a ”pilot-job” framework to run analysis
jobs. In addition, we show how the system can be applied to
run NGS and imputation workflows in the cluster and grid
environments.

This paper is structured as follows. Section II reviews
related work in the context of conventions used in MOLGE-
NIS Compute and attempts to deploy the workflow manage-
ment systems to different computational back-ends. Section
III describes the workflow design model used for workflow
generation and the generation process. Section IV presents
the workflow deployment and the design of the ”pilot-job”
framework used for workflow execution. Section V explains
implementation details of creating analysis protocols, which
are suitable for execution in different back-ends. Section VI
provides details on NGS and imputation workflows. Section
VII discusses our practical experiences, benefits and drawbacks
of using the system. Section VIII offers our conclusions.

II. RELATED WORK

We divide the related work into two sub-domains that
describe work in (1) workflow design and generation and (2)
workflow execution and deployment.



A. Workflow generation and design

Software generators are systems that generate other soft-
ware and software specifications described in a model language
play a role of the input for the generating. Our workflow
model is described in Section III and used as an input for
the workflow generation. As an output, we expect a kind of
generated workflow management system, which is able to run
workflows in a distributed computational environment.

We have gained a lot of experience in generating software
infrastructures to manage and process large bioinformatics
datasets [4], [5], [6]. The MOLGENIS toolkit [7] provides
bioinformaticians with a simple language to model biological
data structures and user interfaces. The MOLGENIS generator
suite automatically translates these models into a feature-
rich, ready-to-use web application including database, user
interfaces, exchange formats, and scriptable interfaces. This
”model-driven” method ensures re-use of best practices and
improves quality because the modelling language and genera-
tors are shared between all MOLGENIS applications, so that
errors are found quickly and improvements are shared easily
by a re-generation. A plug-in mechanism ensures that both the
generator suite and the generated product can be customized
just as much as hand-written software.

In our previous work in the workflow management, we
aimed to combine computational and data management in a
single system - MOLGENIS Compute [8]. Then, we extended
the initial solution with more specific for NGS analysis meta
model, which allowed us to specify data provenance and
workflow execution logic efficiently [9]. In our NGS-specific
solution, we consider the computational cluster as a back-end,
where all the computation take place. The users communicate
with the system through the generated web-interface. Some
logging information is usually hidden in a user interface,
which makes a view on the data more compact and easier to
comprehend. However, in some cases, such as debugging a new
workflow or deploying it in a new environment, users may need
this hidden logging information from an operational system or
analysis tools. Expert users would like to have a direct and
easy access to all the log files produced and it should not be
obliged to do this through the web-interface, which requires
extra effort to implement. This time we want to provide both
command-line and web interface to the workflow management.

B. Workflow execution and deployment

If, in the previous work, we focused on generating compute
management software for PBS clusters [10], here, we want to
run workflows in different back-end environments. There are
a number of projects such as MOTEUR [11] and TavernaPBS
[12], which try to deploy the Taverna workflow management
system (WMS) [13] to the grid and cluster environment
respectively. Furthermore, adding the BioMoby [14] plug-in
into Taverna can make running biological workflows and data
provenance even more structural. Another workflow system
Galaxy [15], which is specialised in running bioinformatics
workflows can be configured to run analysis in Portable Batch
System (PBS) or Sun Grid Engine (SGE) clusters, but we are
not aware of any projects, which connect Galaxy to the grid
middleware.

Besides WMS, bioinformatics analyses can be executed
in distributed computational environments using web-based
portals, such as P-GRADE Portal [16], which supports devel-
opment and submission of distributed applications executed
on the computational resources of various distributed com-
puting infrastructures (DCIs) including clusters, service grids
via web browser. The portal architecture consists of several
layers including the presentation layer with a web interface,
middle layer with different services and architecture layer with
available cluster/grid middleware connectors. In our approach,
we also want to communicate with the system through the
generated web presentation layer, but we minimise another
middleware layer between cluster/grid services and our system
and to keep a minimal implementation to communicate to
back-ends middleware.

For the workflow deployment, instead of the service based
strategies as proposed in Taverna, where actual analysis tools
are wrapped into web-services or other ”black-box” compo-
nents, we would like to use tools directly in both cluster and
grid settings. This will allow us to use analysis tools without
loosing any functionality, that can be hidden in a wrapper
interface. We want to automate tool installation process which
can be suitable for all, if it is possible, environments, that we
include into our back-end compute infrastructure.

To summarize, we (1) re-use best practices from the
Molgenis database generator to generate experiment data and
workflow models for users and (2) fulfil a direct connection
to cluster/grid infrastructures for bioinformatics.

III. WORKFLOW DESIGN AND GENERATION

A. Workflow design

In this new effort, we would like to model bioinformatics
workflows to run them in a unified way in different compu-
tational environments. We can divide the modelling task into
two sub-tasks, such as

• workflow modelling, which match describing work-
flow to run in different computational back-ends

• data modelling, which covers different bioinformatics
analyses (e.g. NGS or imputations)

Fig. 1: Core of the computing model

1) Workflow modelling: The core of our workflow design
remains stable [8], [9]. Our main goal is to keep the model



Fig. 2: Generation procedure using Molgenis job generator (a command-line version)

as simple as possible and avoid abstract entities. The model is
shown in Figure 1.

The Workflow element includes all individual analysis
WorkflowElements and represents the succession of the analy-
sis. The core of the model are analysis script templates stored
in the Protocols. A Protocol has its Parameters. Parameters
can be of different types, such as workflow parameters, envi-
ronment parameters and user parameters. During generation,
the template parameters will be filled with actual Values.
Then, the resulting script will be combined with supplementary
headers and footers, which are specific for different back-ends,
and stored as an analysis Job. The generation using templates
is discussed next.

2) Data modelling: Our NGS model is described in details
in [9]. It is based on the laboratory process when using an
Illumina HiSeq 2000 machine, which produces the input data
for our analysis workflows. It consists of such elements as
Projects, Samples, DNA Libraries, Flowcells, Barcodes etc.

We introduce one common Analysis Target interface to
enable us later to refer uniformly to subjects from different
analyses. Analysis Targets can have complex relations between
themselves. For instance, in our NGS workflow, some analyses
are executed per Barcode being Analysis Target, but others are
executed per Project or Sample being Analysis Target, which
includes all Barcodes. Hence, it is very important to specify
Analysis Targets and their relations for every analysis element
in the workflow.

B. Analysis jobs generation

In general, an analysis, which is intended for execution
in the cluster or grid, consists of many chunks and these

chunks are arranged into workflows. The workflow structure
is essential to run analysis parts in the correct order. However,
usually, all the workflow parts can be generated instantly for
the later execution. An exception is a case than a number of
outputs (i.e. output files) is not know beforehand and these
files should be used as inputs in further steps of the workflow.

We support two implementations for the workflow gener-
ation: (1) a database version and (2) a command-line version.
which uses files instead of database. In the database version,
a workflow is described in the MySQL database, which is
generated from the model (Sec. III-A1). In the command-line
version, a workflow is described in files:

• workflow.csv: a file with a sequence of workflow
elements,

• paratemers.csv: a file with workflow parameters, and

• protocols: a folder with templates of workflow proto-
cols.

These files match the database model and can be im-
ported/exported into the database system. Analysis Targets
also can be either selected as database records through the
generated web interface or listed in the input parameters file.
The workflow description and Analysis Targets are an actual
input for generating analysis jobs.

In the database version jobs are generated as records in the
database. The generation scheme of the command-line version
is presented in Figure 2. Here, jobs are generated as script
files in the specified directory. These script files are ready for
submission to a specified in the generation back-end. For this,
we provide supplementary headers and footers for different
computational back-ends. These headers/footers are written as



templates and stored as files. They are filled with parameters
during generation. Headers/footers are used to specify e.g.
job wall-time, memory requirements, job logging. All that is
needed to generate jobs for a new back-end, is to add new
headers/footers templates for it. The generator source code
stays the same. In addition, we provide a possibility for users
to submit single analysis jobs or jobs with dependencies to a
specified back-end.

In the database version, we are using ”pilot-jobs” to run
and monitor analysis jobs. This solution requires usage of the
web-server and DB, that is discussed next.

IV. WORKFLOW DEPLOYMENT AND EXECUTION IN
DIFFERENT COMPUTATIONAL ENVIRONMENTS

A. Workflow deployment

We define a workflow deployment method that allows us
easily add a new computational back-end and run workflows
there. Here, by workflow deployment, we mean possibility to
execute all workflow analysis steps in all available compu-
tational resources, such as clusters and grids, that does not
require changes in analysis structure or protocols. This is very
important to ensure reproducibility of workflow results, even if
the analysis is executed in a new environment. Previously, we
have executed workflows only in the computational clusters.
Hence, it was sufficient to set up the same execution settings
in all clusters to ensure reproducibility. In this new effort, we
reuse the environment modules package [17], that provides a
dynamic modification of a user’s environment via module files.

Two actions should be performed to install a new software
module into the system: (1) a software should be deployed
on an execution site and (2) a module file, which describes
the software should be added to the system. For a module
deployment, we submit deploy scripts as simple cluster/grid
jobs to a cluster/grid scheduler. An example of the deploy job,
that deploys GATK software for the glite-WMS scheduler
can be found at the Dutch project for biobank repository
[18]. We define two types of deployment scripts: (A) pre-built
and (B) on-site build. The (A) pre-build deployment has the
following logical steps:

1) (manually) create a module file, that contains all
changes to environment variables required to make
the software working

2) (manually) build the software binary files
3) (manually) compress the built software and module

file and upload them to an online repository
4) (cluster/grid job) downloads packaged software from

the repository and decompress it
5) (cluster/grid job) moves the software to the right

directory and ensures the permissions are right
6) (cluster/grid job) moves the module file to the right

directory
7) (cluster/grid job) cleans-up, checks an environment

variables and sends the deployment report

The (B) on-site build software deployment has a few dif-
ferences. A cluster/grid job downloads the source code files of
the software from the online repository and build the software
binary on the cluster/grid site. This approach is needed when
software, which should be installed, has dependencies on the

system libraries, e.g. the R software for statistical computing.
When deployment is completed, the deployed modules can be
initialized using the following statement in analysis scripts:

module load your_software_module/version

The loaded in the module software should be invoked
directly without specifying its classpath. Hence, we ensure
that the same software is used for all analyses and the
analysis scripts for different back-ends have exactly the same
listings to access tools used in the analysis. As a result, the
generated analysis scripts (Sec. III-B) will be executed in all
computational sites in the same way and produce identical
results.

B. Workflow execution

Fig. 3: Job execution using the MOLGENIS ”pilot job”

We aim to run workflows in different computational back-
ends in a unified way. Different back-ends can have different
scheduling middleware and we like to minimize efforts to
switch to new ones. Furthermore, we learnt that distributed



scheduling systems cannot be always fully reliable in practice.
Hence, we want to minimize our dependency on a back-end
middleware when running large bioinformatics analyses.

One of possible solutions is to use a ”pilot-job” framework.
Our proposed ”pilot-job” framework is less exhaustive than
proposed by Luckow et al. [19] and it does not cover all
components of the complete ”pilot-job” frameworks, such as
”pilot-data” or ”pilot-resource”.

In our scenario, the ”pilot-job” (further Pilot) is sent to
a computational back-end from the MOLGENIS web-server,
which also contains the database with actual generated analysis
jobs (Sec. III-B). A back-end scheduler put Pilot into a queue
for execution. When Pilot is started in the execution node, it
calls back to the MOLGENIS web server using cURL and asks
for an available analysis job to execute. If any job is available,
it is given to Pilot. Pilot starts the actual analysis by starting
analysis script in the back-ground and continues in the main
thread to send notifications and updates about the analysis job
status back to the web server. When analysis is finished, its
log files are send back from the analysis script to the database
also using cURL. The analysis job is counted as completed
if both the Pilot, as a monitor, and the job itself reported a
successful completion. Otherwise, the job is counted as failed.
The whole execution process using the proposed ”pilot-job”
scenario is shown in Figure 3.

This approach works for both the glite-WMS grid and
PBS/SGE cluster middleware. The only differences are the
”pilot-job” itself and a command line, which is used to submit
the ”pilot-job” to the scheduler. In the current implementation,
”pilot-jobs” are submitted via the web-generated for every
user@backend pilots dashboard (Fig. 4).

Fig. 4: Example of the web MOLGENIS pilots dashboard.

The MOLGENIS database contains a number of back-
end records, which include such information as the back-
end address, the back-end type (e.g. gLite grid, PBS cluster),
the username and the path to the file, which will be used
for the pilot submission (e.g. .jdl, .sh files). The dashboard
user can generate jobs for submission to the specific back-end
and, then, submit and monitor their execution after entering
his password. In the future, we are planning to try creating
separated dashboards for every analysis run. The resubmission
option becomes visible in the dashboard, if failed jobs exist.

The actual ”pilot-jobs” are simple shell scripts. They are
defined per beck-end middleware and embody allocation of
the back-end resources (e.g. wall-time, memory). The ”pilot-
jobs” source code is available at the MOLGENIS repository
[20]. The dashboard user can choose specific ”pilot-jobs” for
submission of long, short, CPU or memory demanding jobs.

To summarize, we propose the solution, which trivially enables
using a new middleware in our system and does not requires
any deep study of a new middleware technical details.

V. IMPLEMENTATION DETAIL ON ANALYSIS PROTOCOL
TEMPLATES

As discussed above, actual scripts are generated from
templates stored in Protocol elements or protocol files, where
template parameters are filled in with actual values (Sec.
III-A1). Here, we present the listing of the protocol template
of the BwaAlign operation, as a protocol example.

//header
#MOLGENIS walltime=15:00:00 \
nodes=1 cores=4 mem=6
#FOREACH leftbarcodefqgz

//tool management
module load bwa/${bwaVersion}

//data management
getFile ${indexfile}
getFile ${leftbarcodefqgz}

//template of the actual analysis
bwa aln \
${indexfile} \
${leftbarcodefqgz} \
-t ${bwaaligncores} \
-f ${leftbwaout} \

//data management
putFile ${leftbwaout}

The template consists of several parts. Lets us look at them
in detail. The script header is used only in the command-
line version of MOLGENIS Compute (Sec. III-B) for workflow
generation from files. In the command-line version, the final
analysis commands are enveloped with the header and footer
of supplementary commands for a specific back-end. The
#MOLGENIS header is used for generation of these back-end
specific headers/footers, which contain job specific parameters
used for job scheduling, such as a job wall-time, number of re-
quired memory, cores to run the analysis etc. The #FOREACH
specifies the Analysis Target used in this protocol (Sec. III-A1).

Next, the tool management section is listed, which
is discussed in Section IV-A. The bwa module is loaded in
this example. Further, there are the data management and
actual analysis sections. The data management en-
sures transfer of required for analysis files to the location
(computational node) in the grid or cluster, where actual com-
putations take place. Functions getFile and putFile are
differ per a back-end type. For example, for the grid back-end,
these functions implement file transfer using srm-commands
from and to the central storage used in the National Computing
Grid for Life Sciences [21], where we run our computations.
This transfer is needed to keep analysis results saved, after
analysis is finished. The listings of data transfer files are also
available at the MOLGENIS repository. [20].

The actual analysis section contains the template
of an actual analysis command, which is filed with values



during generation (Sec. III-B). Variables in curly brackets are
Parameters in our model. Some Parameters can consist of
a combination of others and, in turn, are constructed using
templates. For example, Parameter leftbwaout has the
following value:

${leftfile}.bwa_align.${indexfileID}.sai

So, a variable can be a complex combination of other
variables. The generated command the BwaAlign example is
listed below:

bwa aln \
human_g1k_v37.fa \
121128_SN163_0484_AC1D3HACXX_L8_CAACCT_1.fq.gz \
-t 4 \
-f 121128_SN163_0484_AC1D3HACXX_L8_CAACCT_1.bwa_align.human
_g1k_v37.sai

Hiding supplementary operations for tool and data manage-
ment, which are specific per back-end, outside the generated
scripts, allows us to run the same scripts in different back-end.
Using the module system to access analysis software and some
additional data needed for analysis, such as large reference sets
and genome builds, guarantees the identical analysis results,
when running the analysis in different back-ends.

VI. EXAMPLES OF AVAILABLE WORKFLOWS FOR THE
GLITE-WMS GRID AND CLUSTERS

We created a library of several public available workflows
[22]. Two of them are fully tested in the National Computing
Grid for Life Sciences, which uses gLite-WMS as a scheduling
middleware, PBS/SGE/BSUB clusters and on a local machine.

A. NGS alignment

The first workflow is the NGS alignment and SNP calling
workflow, which is comprised of best-practice open-source
software packages used in multiple institutions leading to 23
analysis steps. It consists of four major parts:

(1) Alignment: The alignment is performed using Burrows-
Wheeler Aligner BWA. The produced SAM file is converted
to a binary format using Picard and sorted afterwards.

(2) Realignment: This part of the workflow duplicates
reads are marked using Picard. Afterwards, realignment is
performed around known insertions and deletions using the
Genome Analysis ToolKit GATK. If reads are re-aligned, the
fix-mates step will update the coordinates of the reads mate.

(3) Quality score recalibration: The base quality scores
of a read a re-calibrated using covariate information are per-
formed here. This method takes several covariates like cycle,
dinucleotides, readgroup etc. into account and recalculates the
quality scores, leading to reads being re-written with better
empirical quality scores.

(4) Variant calling: The last part of the workflow performs
indel and SNP calling using the GATK. The output of the
pipeline are two VCF files, one with indels and one containing
SNPs, ready for downstream analysis.

Expected time to run this workflow per Sample is about
two days, depending on whether we are doing the exome or
whole genome sequencing.

B. Imputation

The second workflow is imputation of the genome wide
association study (GWAS). This workflow consists of four
steps:

(1) Preparing the reference: Here, the reference is created
from the Variant Call Format (VCF) of the genome reference
(This steps is executed per the reference set).

(2) Preparing and checking the quality of the study
data: In this step, all alleles are aligned to the reference
genome and performs quality control.

(3) Phasing: Here, the data is phased using SHAPEIT2
[23], this is done per chromosome. The phasing also can be
done once for a specific study.

(4) Imputation: This step consists of imputing the phased
data with IMPUTE2 [24] and concatenation of the results per
chromosome.

Normally, we split the dataset per 5 megabases regions
and per 500 samples for one imputation job. The number of
imputation jobs can be calculated using Formula 1. This step
is executed per study.

Chunks =

22∑
chr=1

Lenghtchr
5Megabase

∗ Samples

500
(1)

For genome build 37 and 500 samples this yields 589
chunks. The execution time mostly depends on the used refer-
ence set. We observed an overage of 50 minutes to impute one
chunk, when running the workflow in the National Computing
Grid for Life Sciences [21]

VII. DISCUSSION

A. Scaling bio-analysis

Figure 5 summarizes our view on the bio-analysis scaling
process.

Fig. 5: Scaling computational environment

Scaling can be split up into two environment spaces: (1)
analysis tools and (2) analysis data. Both tool and data should
be available in computational back-ends, where we want to
run analyses. The module deployment approach (Sec. IV-A)
solves the software availability problem in both cluster and
grid environment. Deployment scripts should be run in all sites
of the grid for the grid deployment. The data availability in
the grid can be solved by uploading input data and intermedia
analysis results to the central grid srm storage, which is



available to all grid sites. We have found a good practice to
define a root directory both in grid and clusters used and
keep the directory structures starting from the root identical
in all back-ends. Also, automating of the file transfer between
the srm grid storage and local clusters outside the grid can be
very useful.

B. Pilot implementation

We tried to keep modelling and implementation of our
”pilot-job” approach straight forward, therefore, robust. We
found that sending the ”pulse” or the status of the actual
analysis is an important functionality of the ”pilot-job”. It
is very useful, because we intend to run long (2-10 hours)
analysis jobs and we want to know about possible analysis
failure as soon as possible. We can improve usage of resources
allocated for a ”pilot-job” by sending several analysis jobs to
one ”pilot-job”, if the analysis jobs fit the ”pilot-job” wall-time.
We meet conditions of ”pilot-data” by the proper workflow
design, where we divide analysis data on chunks if it is needed.
However, it can be interesting to try out other third party
”pilot” solutions.

C. Ensuring correctness when running NGS and imputations
in the distributed environment

Running analysis in the grid is even less reliable than in the
cluster, since it includes extra file transfers and less control of
remote execution nodes. Furthermore, we do not want to rely
only on the context of the log files produced by the analysis
tools for NGS and imputations with large datasets to analyse.

For NGS analysis, we kept a number of DNA sequence
reads constant from input workflow files to the final results
of the analysis. We did not remove any reads during filter-
ing, instead we just marked them. So, the number of reads
stayed constant during the whole analysis and checking this
postcondition after analysis guarantees its correct completion.
The number of reads in sequence data files can be calculated
using the Genome Analysis Toolkit GATK [25]. We performed
the reads calculation only in the end of the pipeline due
to computational overhead. For imputation with minimac, a
number of samples in input and output files is a good indication
of a successful analysis completion. A number of samples is
equal to a number of lines in these files. It should be equal in
input and output files and can be easily checked.

D. Workflow modelling and visualization

Having the database and web user interface generated
from the model, it is not surprising that we chose a simple
table to show the workflow structure. An example workflow
visualization in MOLGENIS compute is shown in Figure 6.
Every line of the table shows WorkflowElement, its Protocol
and previous WorkflowElements, if they exist. Generated Jobs,
their Parameters and Values are presented in separated tables
in the same style.

Many other established WMS visualize workflows as
graphs, where the nodes are analysis steps and the edges
are interactions and constraints between analysis steps. Still,
proposed visualization do not cover all analysis aspects needed
to optimize workflow execution. As one of our next devel-
opment direction, we want to apply some visual analytics

Fig. 6: Showing workflow structure in the MOLGENIS framework
[8]

methods used in software field, such as combined UML
(unified modeling language) diagrams and ”quality” metrics,
to enhance understanding and sharing of workflows, and ease
workflow analysis and design [26].

VIII. CONCLUSION

We proposed a lightweight collaborative analysis environ-
ment for bioinformatics service teams, where the analysis
to be computed in different back-end environments, such as
computational clusters and grids, is specified in a unified way.
For this, we use one model, which is suitable for different
workflows, such as the NGS alignment and SNP imputation.
All analysis jobs can be generated in the database and executed
using a ”pilot-job” framework, or they can be generated as
shell scripts with back-end specific headers and footers.

We would next like to create workflow importer/exporter
to interchange workflows between different workflow man-
agement tools, such as Galaxy or Taverna. Hence, we can
re-use more externally defined workflows and easily share
workflow defined in our group. A second essential direction
is to study the practical effectiveness of running workflows
in different computational back-ends using described in [26]
visual analytics methods and learning from the best practices
and experiences.

ACKNOWLEDGMENT

The authors would like to thank the BBMRI-NL Rain-
bow Project 2 (http://www.bbmri.nl), the Target project
(http://www.rug.nl/target) and the BigGrid eBioGrid project
(http://www.ebiogrid.nl). Also, the authors thank Erwin
Winder for implementing the pilots dashboard generator.

REFERENCES

[1] M. DePristo and M. Daly, “A framework for variation discovery
and genotyping using next-generation dna sequencing data,” Nature
Genetics, vol. 43(5), pp. 491–498, 2011.

[2] M. Swertz and R. Jansen, “Beyond standardization: dynamic software
infrastructures for systems biology,” Nature Reviews Genetics, vol. 8:3,
pp. 235–43, 2007.

[3] ——, “The molgenis toolkit: rapid prototyping of biosoftware at the
push of a button.” BMC Bioinformatics, vol. 11:12, 2010.

[4] ——, “Xgap: a uniform and extensible data model and software
platform for genotype and phenotype experiments,” Genome Biology,
vol. 11:27, 2010.



[5] Y. Li and R. Jansen, “Global genetic robustness of the alternative
splicing machinery in caenorhabditis elegans,” Genetics, vol. 186(1),
pp. 405–10, 2010.

[6] Y. Li and M. Swertz, “Designgg: an r-package and web tool for
the optimal design of genetical genomics,” BMC Bioinformatics, vol.
10:188, 2009.

[7] Genomics Coordination Center, Groningen, “Molgenis web-site,” 2011,
http://www.molgenis.org.

[8] H. Byelas and M. Swertz, “Towards a molgenis based computational
framework,” in proceedings of the 19th EUROMICRO International
Conference on Parallel, Distributed and Network-Based Computing, pp.
331–339, 2011.

[9] ——, “Introducing data provenance and error handling for ngs work-
flows within the molgenis computational framework,” in proceedings of
the BIOSTEC BIOINFORMATICS-2012 conference, pp. 42–50, 2012.

[10] Adaptive Computing, “Torque resource manager,” 2012, http://www.
adaptivecomputing.com/products/open-source/torque/.

[11] T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec, “Flexible and
efficient workflow deployment of data-intensive applications on grids
with moteur,” Int. J. High Perform. Comput. Appl., vol. 22, no. 3, pp.
347–360, 2008.

[12] University of Virginia, Center for Public Health Genomics,
“Tavernapbs,” 2012, http://cphg.virginia.edu/mackey/projects/
sequencing-pipelines/tavernapbs/.

[13] T. Oinn and M. Greenwood, “Taverna: lessons in creating a workflow
environment for the life sciences,” CONCURRENCY AND COMPUTA-
TION: PRACTICE AND EXPERIENCE, vol. 18:10, pp. 1067 – 1100,
2005.

[14] E. Kawas and M. Wilkinson, “Biomoby extensions to the taverna
workflow management and enactment software,” BMC Bioinformatics,
vol. 7:523, 2006.

[15] D. Blankenberg and J. Taylor, “A framework for collaborative analysis
of encode data: making large-scale analyses biologist-friendly,” Genome
Res., vol. 17:6, pp. 960 – 4, 2007.

[16] P. Kacsuk, “P-grade portal family for grid infrastructures,” Concurrency
and Computation: Practice and Experience journal, vol. 23:3, pp. 235–
245, 2012.

[17] P. O. J.L. Furlani, “Abstract yourself with modules,” Proceedings of
the Tenth Large Installation Systems Administration Conference (LISA
’96), pp. 193–204, 1996.

[18] BBMRI.NL, “the dutch project for biobank,” 2012, http://www.
bbmriwiki.nl/svn/ebiogrid/modules/GATK/1.0.5069/.

[19] A. Luckow, “Saga bigjob: An extensible and interoperable pilot-job
abstraction for distributed applications and systems,” Proceedings of
the Tenth 0th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, 2010.

[20] MOLGENIS team, “the molgenis github repository, pilot sources,”
2012, http://github.com/molgenis/molgenis apps-legacy/tree/testing/
modules/compute/pilots/.

[21] BIG Grid, “the dutch e-science grid,” 2010, http://www.biggrid.nl.
[22] MOLGENIS team, “the molgenis workflow repository,” 2013, http://

github.com/molgenis/molgenis-pipelines/tree/master/compute4.
[23] O. Delaneau and J. Marchini, “Improved whole-chromosome phasing

for disease and population genetic studies,” Nature Methods, vol. 10,
pp. 5–6, 2013.

[24] B. Howie and J. Marchini, “A flexible and accurate genotype imputation
method for the next generation of genome-wide association studies,”
PLoS Genet, vol. 5, p. e1000529, 2009.

[25] The Genome Analysis Toolkit, “Broad institute,” 2011, http://www.
broadinstitute.org/.

[26] H. Byelas and M. Swertz, “Visualization of bioinformatics workflows
for ease of understanding and design activities,” Proceedings of the
BIOSTEC BIOINFORMATICS-2013 conference, pp. 117–123, 2013.


